Writing Systems of Equations from Word Problems

MGSE9-12.A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints.

MGSE9-12.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase “in two or more variables” refers to formulas like the compound interest formula, in which \(A = P(1 + r/n)^{nt} \) has multiple variables.)

What am I learning today?

How to write a system of equations from a scenario

How will I show that I learned it?

Write a system of equations and solve using my 3 techniques
Writing Systems of Equations:
Step 1: Define the variables.
Step 2: Write 2 equations from the phrases.
Step 3: Use substitution, elimination, or graphing to solve for variables.
Step 4: Answer question using proper units.

Slope Intercept Form
Scenarios that lend themselves to fit the $y = mx + b$ format.

Example: You pay $2 to ride in a taxi and $.20 per mile.
Total Items Form
Scenarios that deal with buying two or more types of items.

Example: You are buying cokes and sprites for 10 people.

\[C + S = 10 \]

Total Price Form
Scenarios that deal with buying two or more types of items and paying a total price.

Example: You are buying hot dogs for $2 each and hamburgers for $3 each. You spend $13 total.

\[2d + 3b = 13 \]
Ex. A The difference of two numbers is 7. The sum of the two numbers is 29. Find the two numbers.

\[x = 1^{st} \# \]
\[y = 2^{nd} \# \]
\[x - y = 7 \]
\[x + y = 29 \]
\[2x = 36 \]
\[x = 18 \Rightarrow 18 + y = 29 \]
\[y = 11 \]

The 2 #'s are 18 and 11.

Ex. B You have 25 coins in your pocket, all nickels and dimes. Total, the coins add up to $2.10. How many of each do you have?

\[n = \# \text{ of nickels} \]
\[d = \# \text{ of dimes} \]
\[n + d = 25 \Rightarrow d = 25 - n \]
\[0.05n + 0.10d = 2.10 \]
\[0.05n + 0.10(25 - n) = 2.10 \]
\[0.05n + 2.5 - 0.10n = 2.10 \]
\[-0.05n + 2.5 = 2.10 \]
\[-0.05n = -0.4 \]
\[n = 8 \]
\[d = 25 - 8 \]
\[d = 17 \]

I have 17 dimes and 8 nickels in my pocket.
Ex. C You went to Pizza Hut. The first time, you bought 3 breadsticks and 2 pizzas; it cost you $26. The second time, you bought 1 breadstick and 5 pizzas; it cost you $39. How much does a single breadstick cost? How much does a single pizza cost?

\[b = \text{cost of breadstick} \]
\[p = \text{cost of 1 pizza} \]

\[2p + 3b = 26 \Rightarrow 2p + 3b = 26 \]
\[(5p + b = 39) \cdot 3 \Rightarrow -15p - 3b = -117 \]

Pizza costs $7 and order of breadsticks costs $4

Ex. D You are selling tickets for a high school play. Student tickets cost $4 and general admission tickets cost $6. You sell 31 tickets and collect $170. How many of each type did you sell?

\[s = \# \text{ of stud tickets} \]
\[g = \# \text{ of gen. ad. tickets} \]

\[4s + 6g = 170 \]
\[s + g = 31 \]
Ex. E Two planes are currently landing at Hartsfield. One plane is descending at 300 feet per minute from 9000 feet. The other is descending at 200 feet per minute from 8000 feet. When will they be at the same height and at what time will that be?

\[x = \text{time spent descending} \]
\[y = \text{height of plane} \]
\[y = -300x + 9000 \]
\[y = -200x + 8000 \]
\[-300x + 9000 = -200x + 8000 \]
\[9000 - 1000 = 100x \]
\[x = 10 \text{ min} \]
\[y = -300(10) + 9000 = 6000 \text{ ft} \]

10 minutes into their descent, both planes are at 6000 ft.

Ex. F You are taking a trip cross-country. When you are flying to California, the plane is traveling at 528 mph with a headwind. When you are flying home to Georgia, the plane is traveling at 572 mph with a tailwind. What is the speed of the plane and what is the speed of the wind?

\[x = \text{speed of plane} \quad x = 550 \]
\[y = \text{speed of wind} \quad y = 22 \]
\[x - y = 528 \]
\[x + y = 572 \]
\[2x = 1100 \]
\[x = 550 \]
\[550 + y = 572 \]
\[y = 22 \]

The plane’s speed is 550 mph and the wind’s speed is 22 mph.
Ex. G To earn money for college, Susan is making and selling earrings. Her weekly costs for advertising and phone calls are $36, and each pair of earrings costs $1.50 to produce. If Susan sells the earrings at $6 per pair, how many pairs must she sell per week to break even?

\[
\text{Cost} = \text{Revenue} - \text{Cost} \\
\text{Profit} = \text{Revenue} - \text{Cost} \\
\text{Break Even: Profit} = 0 \\
x = \# \text{ of earrings} \\
\text{Cost} = 1.5x + 36 \\
\text{Revenue} = 6x
\]

\[
1.5x + 36 = 6x \\
36 = 4.5x \\
x = 8
\]

She must sell 8 pairs of earrings per week to break even.

Ex. H To conduct a scientific experiment, students need to mix 90 milliliters of a 3% acid solution. They have a 1% and a 10% acid solution available. How many milliliters of each type of solution should be combined to produce 90 milliliters of the 3% solution?

\[
x = \text{mL of 1%} \\
y = \text{mL of 10%} \\
x + y = 90 \Rightarrow y = 90 - x \\
0.01x + 0.10y = 0.03(90) \\
0.01x + 0.10(90 - x) = 2.7 \\
0.01x + 9 - 0.10x = 2.7 \\
-0.09x = -6.3 \\
x = 70 \\
y = 20
\]

I need 70 mL of 1% and 20 mL of 10% solution.